Page Not Found
Page not found. Your pixels are in another canvas.
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Page not found. Your pixels are in another canvas.
About me
This is a page not in th emain menu
Published:
This post will show up by default. To disable scheduling of future posts, edit config.yml
and set future: false
.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Published:
This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.
Short description of portfolio item number 1
Short description of portfolio item number 2
Published in The International Workshop on Pretraining: Algorithms, Architectures, and Applications (Pretrain@KDD) 2021, 2021
Protein is linked to almost every life process. Therefore, analyzing the biological structure and property of protein sequences is critical to the exploration of life, as well as disease detection and drug discovery. Traditional protein analysis methods tend to be labor-intensive and time-consuming. The emergence of deep learning models makes modeling data patterns in large quantities of data possible. Interdisciplinary researchers have begun to leverage deep learning methods to model large biological datasets, e.g. using long short-term memory and convolutional neural network for protein sequence classification. After millions of years of evolution, evolutionary information is encoded in protein sequences. Inspired by the similarity between natural language and protein sequences, we use large-scale language models to model evolutionary-scale protein sequences, encoding protein biology information in representation. Significant improvements are observed in both tokenlevel and sequence-level tasks, demonstrating that our large-scale model can accurately capture evolution information from pretraining on evolutionary-scale individual sequences.
Download here
Published in Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI) 2022 , 2022
We argue that the present setting of semisupervised learning on graphs may result in unfair comparisons, due to its potential risk of overtuning hyper-parameters for models. In this paper, we highlight the significant influence of tuning hyper-parameters, which leverages the label information in the validation set to improve the performance. To explore the limit of over-tuning hyperparameters, we propose ValidUtil, an approach to fully utilize the label information in the validation set through an extra group of hyper-parameters. With ValidUtil, even GCN can easily get high accuracy of 85.8% on Cora. To avoid over-tuning, we merge the training set and the validation set and construct an i.i.d. graph benchmark (IGB) consisting of 4 datasets. Each dataset contains 100 i.i.d. graphs sampled from a large graph to reduce the evaluation variance. Our experiments suggest that IGB is a more stable benchmark than previous datasets for semisupervised learning on graphs.
Download here
Published:
This is a description of your talk, which is a markdown files that can be all markdown-ified like any other post. Yay markdown!
Published:
This is a description of your conference proceedings talk, note the different field in type. You can put anything in this field.
Undergraduate course, University 1, Department, 2014
This is a description of a teaching experience. You can use markdown like any other post.
Workshop, University 1, Department, 2015
This is a description of a teaching experience. You can use markdown like any other post.